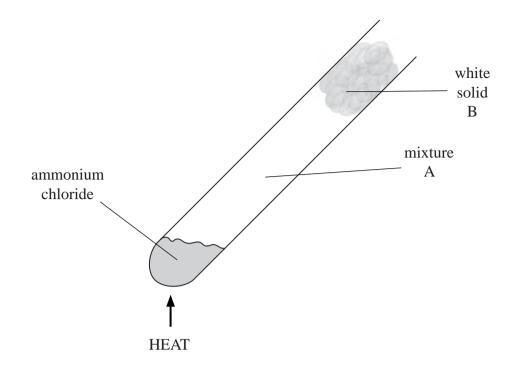
All questions are for both separate science and combined science students

1	The element carbon has three common isotopes.
	These are carbon-12, carbon-13 and carbon-14.

(a)	Complete the table to show the number of protons and neutrons in each isotope
	of carbon.

(2)

Isotope	Mass number	Number of protons	Number of neutrons
carbon-12	12	6	6
carbon-13	13		
carbon-14	14		


(b) Explain, in terms of electrons, why the three isotopes have the same chemical p	oroperties. (1)
(c) (i) State what is meant by the term relative atomic mass, A_r	(2)
(ii) A sample of carbon contained 98.90% carbon-12 and 1.10% carbon-13.	
Use this information to calculate the relative atomic mass of carbon in the s Give your answer to two decimal places.	ample.

Relative atomic mass

(Total for Question 1 = 8 marks)

2 Atoms co	ontain three diffe	rent types of part	icle.	
These are electrons, ner	utrons and proton	ns.		
(a) Which one of the th	ree particles has	a negative charge	e?	(1)
(b) Which one of the th	ree particles has	the smallest mas	s?	(1)
(c) Use words from the	-			
Each word may be u	elements	molecules	neutrons	protons
		contain equal nu		
.,		nd		
				(1)
(ii) Isotopes are ato	oms with the san	ne number of		
but different nu	imbers of		in the nucle	eus. (2)
(d) An atom of magnes	ium can be repre	esented by the syn	nbol ²⁴ Mg.	
Use numbers to con	nplete these state	ements about this	atom.	
(i) The atomic nur	mber of this aton	n is		(1)
(ii) The mass numb	per of this atom i	is .		(1)
(iii) The electronic	configuration of	this atom is		(1)

3 The diagram shows ammonium chloride being heated in a test tube.

(a) The formula of ammonium chloride is NH₄Cl.

How many different elements are there in ammonium chloride?

(1)

(b) Identify the two gases in mixture A.

(2)

and

(c) Identify the white solid B.

(1)

(d) Place crosses (⋈) in **two** boxes to identify the processes that occur in the test tube.

(2)

boiling

decomposition

melting 🔲

neutralisation

(Total for Question 3 = 6 marks)

_		
4	This question is about the elements hydrogen and oxygen.	
	(a) The circles in the diagrams represent molecules of hydrogen.	
	Place a cross ($oxtimes$) in the box under the diagram that represents hydrogen gas.	(1)
	(b) The diagram below shows two different atoms of hydrogen.	
	X	
	(i) The particle furthest from the centre of each atom is	(1)
	A an electron	(")
	■ B a neutron	
	■ C a nucleus	
	D a proton	
	(ii) The particle present in atom Y but not in atom X is	(4)
	■ A an electron	(1)
	■ B a neutron	
	■ C a nucleus	
	■ D a proton	
	(iii) Both atoms are neutral because they have the same number of	(4)
	A electrons and neutrons	(1)
	■ B electrons and protons	
	C electrons, neutrons and protons	
	D neutrons and protons	

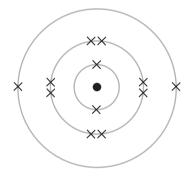
PhysicsAndMathsTutor.com

(c)	Different atoms	of o	xygen	can	be	represented	as
-----	-----------------	------	-------	-----	----	-------------	----

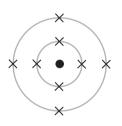
16		18
0	and	0
8		8

Select words or phrases from the box to complete the sentence about these atoms of oxygen.

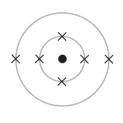
You may use each word or phrase once, more than once or not at all.

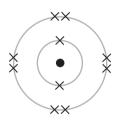

atomic numbers	isotopes	mass numbers	numbers of electrons
			(3)
These atoms of oxyger	n are called		
because their			are the same
but their		are o	different.
		(Total f	for Ouestion 4 = 7 marks)

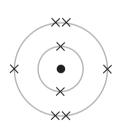
- **5** Distress flares are used to attract attention in an emergency. The flares contain magnesium, which burns with a bright, white flame to form magnesium oxide.
 - (a) The reaction between magnesium and oxygen is exothermic.


What is meant by the term **exothermic**?

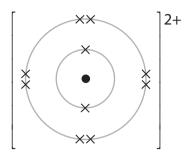
(1)

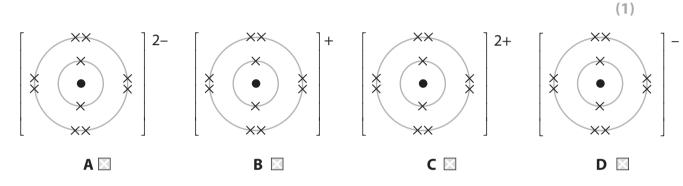

(b) The diagram shows the electronic configuration of a magnesium atom.


Put a cross in a box to indicate the diagram that shows the electronic configuration of an oxygen atom. (1)


 $A \boxtimes$

В


C


 D

(c) Magnesium ions and oxide ions are formed when magnesium reacts with oxygen.

The diagram shows the electronic configuration and charge of a magnesium ion.

Put a cross in a box to indicate the diagram that shows the electronic configuration and charge of an oxide ion.

(d) A major use of magnesium oxide is as a refractory material, which is a material that can withstand very high temperatures.

Explain, in terms of its structure and bonding, why magnesium oxide has a very high melting point.

		(Total for Question	5 = 9 marks)
Formula		 	
Name		 	
with hydroc	hloric acid.		(2)

(e) Magnesium oxide is also used as an antacid. It helps relieve indigestion by neutralising hydrochloric acid in the stomach.

Give the name and formula of the salt produced when magnesium oxide reacts

6 This question is about the element berylling	ium.
--	------

(a) Use words from the box to complete the sentences about bery	/llium.
---	---------

Each word may be used once, more than once or not at all.

(7)

electrons nucleus	negative positive	neutral protons	neutrons shells	
An atom of beryllium	has a central	tha	at contains particles	
called	and	Ar	ound these	
particles there are		orbiting in	······································	
An atom of beryllium	has no charge beca	use it contains equ	al numbers	
of	and	······•••		
The particles with the	lowest mass in an a	atom of beryllium a	re called	
Beryllium forms a con	npound with the fo	rmula Be(OH) ₂		
(i) How many differe	nt elements are the	re in Be(OH) ₂ ?		(1)
(ii) What is the total r	number of atoms in	the formula Be(OH)	₂ ?	(1)
		(Total f	or Question 6 = 9 ma	ulce)